Global Intercomparison of Hyper-Resolution ECOSTRESS Coastal Sea Surface Temperature Measurements from the Space Station with VIIRS-N20

Author:

Weidberg Nicolas,Wethey David S.ORCID,Woodin Sarah A.

Abstract

The ECOSTRESS multi-channel thermal radiometer on the Space Station has an unprecedented spatial resolution of 70 m and a return time of hours to 5 days. It resolves details of oceanographic features not detectable in imagery from MODIS or VIIRS, and has open-ocean coverage, unlike Landsat. We calibrated two years of ECOSTRESS sea surface temperature observations with L2 data from VIIRS-N20 (2019–2020) worldwide but especially focused on important upwelling systems currently undergoing climate change forcing. Unlike operational SST products from VIIRS-N20, the ECOSTRESS surface temperature algorithm does not use a regression approach to determine temperature, but solves a set of simultaneous equations based on first principles for both surface temperature and emissivity. We compared ECOSTRESS ocean temperatures to well-calibrated clear sky satellite measurements from VIIRS-N20. Data comparisons were constrained to those within 90 min of one another using co-located clear sky VIIRS and ECOSTRESS pixels. ECOSTRESS ocean temperatures have a consistent 1.01 °C negative bias relative to VIIRS-N20, although deviation in brightness temperatures within the 10.49 and 12.01 µm bands were much smaller. As an alternative, we compared the performance of NOAA, NASA, and U.S. Navy operational split-window SST regression algorithms taking into consideration the statistical limitations imposed by intrinsic SST spatial autocorrelation and applying corrections on brightness temperatures. We conclude that standard bias-correction methods using already validated and well-known algorithms can be applied to ECOSTRESS SST data, yielding highly accurate products of ultra-high spatial resolution for studies of biological and physical oceanography in a time when these are needed to properly evaluate regional and even local impacts of climate change.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010

2. Climate Change 2013: The Physical Science Basis: Summary for Policymakers, a Report of Working Group I to the Fifth Assessment Report of the IPCC;Alexander,2013

3. Global Oceans

4. Warming trends increasingly dominate global ocean

5. The oceanic sink for anthropogenic CO 2 from 1994 to 2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3