Abstract
Data from automated meteorological instruments are used for model validation and aviation applications, but their measurement accuracy has not being adequately tested. In this study, a number of ground-based in-situ, remote-sensing instruments that measure visibility (VIS), cloud base height (CBH), and relative humidity (RH) were tested against data obtained using standard reference instruments and human observations at Cold Lake Airport, Alberta, Canada. The instruments included the Vaisala FS11P and PWD22 (FSPW), a profiling microwave radiometer (MWR), the Jenoptik ceilometer, Rotronic, Vaisala WXT520, AES-Dewcell RH, and temperature sensors. The results showed that the VIS measured using the FSPWs were well correlated with a correlation coefficient (R) of 0.84 under precipitation conditions and 0.96 during non-precipitating conditions (NPC), indicating very good agreement. However, the FS11P on average measured higher VIS, particularly under NPC. When the FSPWs were compared against human observation, a significant quantization in the data was observed, but less was noted during daytime compared to nighttime. Both probes measured higher VIS compared to human observation, and the calculated R was close to 0.6 for both probes. When the FSPWs were compared against human observation for VIS < 4 km, the calculated mean difference (MD) for the PWD22 (MD ≈ 0.98 km) was better than the FS11P (MD ≈ 1.37 km); thus, the PWD22 was slightly closer to human observation than the FS11P. No significant difference was found between daytime and nighttime measured VIS as compared to human observation; the instruments measured slightly higher VIS. Two extinction parameterizations as functions of snowfall rate were developed based on the VFPs measurements, and the results were similar. The Jenoptik ceilometer generally measured lower CBH than human observation, but the MWR measured larger CBHs for values <2 km, while CBHs were underestimated for higher CBHs.
Funder
Department of National defense (DND) and Canadian National Search and Rescue New Initiative Fund
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献