Abstract
The use of LiDAR point clouds for accurate three-dimensional perception is crucial for realizing high-level autonomous driving systems. Upon considering the drawbacks of the current point cloud object-detection algorithms, this paper proposes HCNet, an algorithm that combines an attention mechanism with adaptive adjustment, starting from feature fusion and overcoming the sparse and uneven distribution of point clouds. Inspired by the basic idea of an attention mechanism, a feature-fusion structure HC module with height attention and channel attention, weighted in parallel, is proposed to perform feature-fusion on multiple pseudo images. The use of several weighting mechanisms enhances the ability of feature-information expression. Additionally, we designed an adaptively adjusted detection head that also overcomes the sparsity of the point cloud from the perspective of original information fusion. It reduces the interference caused by the uneven distribution of the point cloud from the perspective of adaptive adjustment. The results show that our HCNet has better accuracy than other one-stage-network or even two-stage-network RCNNs under some evaluation detection metrics. Additionally, it has a detection rate of 30FPS. Especially for hard samples, the algorithm in this paper has better detection performance than many existing algorithms.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Reference40 articles.
1. Self-driving cars: A survey
2. A Survey of Autonomous Driving: Common Practices and Emerging Technologies
3. Pointnet++: Deep hierarchical feature learning on point sets in a metric space;Qi;arXiv,2017
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献