Land Surface Temperature Retrieval from Fengyun-3D Medium Resolution Spectral Imager II (FY-3D MERSI-II) Data with the Improved Two-Factor Split-Window Algorithm

Author:

Du Wenhui,Qin Zhihao,Fan Jinlong,Zhao Chunliang,Huang Qiuyan,Cao Kun,Abbasi BilawalORCID

Abstract

Land surface temperature (LST) is an essential parameter widely used in environmental studies. The Medium Resolution Spectral Imager II (MERSI-II) boarded on the second generation Chinese polar-orbiting meteorological satellite, Fengyun-3D (FY-3D), provides a new opportunity for LST retrieval at a spatial resolution of 250 m that is higher than that of the already widely used Moderate Resolution Imaging Spectrometer (MODIS) LST data of 1000 m. However, there is no operational LST product from FY-3D MERSI-II data available for free access. Therefore, in this study, we developed an improved two-factor split-window algorithm (TFSWA) of LST retrieval from this data source as it has two thermal-infrared (TIR) bands. The essential coefficients of the TFSWA algorithm have been carefully and precisely estimated for the FY-3D MERSI-II TIR thermal bands. A new approach for estimating land surface emissivity has been developed using the ASTER Global Emissivity Database (ASTER GED) and the International Geosphere-Biosphere Program (IGBP) data. A model to estimate the atmospheric water vapor content (AWVC) from the three atmospheric water vapor absorption bands (bands 16, 17, and 18) has been developed as AWVC has been recognized as the most important factor determining the variation of AT. Using MODTRAN 5.2, the equations for the AT estimate from the retrieved AWVC were established. In addition, the AT of the pixels at the far edge of FY-3D MERSI-II data may be strongly affected by the increase of the optical path. Viewing zenith angle (VZA) correction equations were proposed in the study to correct this effect on AT estimation. Field data from four stations were applied to validate the improved TFSWA in the study. Cross-validation with MODIS LST (MYD11) was also conducted to evaluate the improved TFSWA. The cross-validation result indicates that the FY-3D MERSI-II LST from the improved TFSWA are comparable with MODIS LST while the correlation coefficients between FY-3D MERSI-II LST and MODIS LST over the Mid-East China region are in the range of 0.84~0.98 for different seasons and land cover types. Validation with 318 field LST samples indicates that the average MAE and R2 of the scenes at the four stations are about 1.97 K and 0.98, respectively. Thus, it could be concluded that the improved TFSWA developed in the study can be a good algorithm for LST retrieval from FY-3D MERSI-II data with acceptable accuracy.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3