Simulation of External Stray Light for FY-3C VIRR Combined with Satellite Orbit Attitude Model

Author:

Zhao Junyuan,He YuqingORCID,Hu Xiuqing,Jin Weiqi,Zhang Lijun,Zhang Dan

Abstract

Optical imaging systems mounted on a Sun-synchronous satellite are probably disturbed by stray light when working in the space environment. Existing research has shown that the Visible Infrared Radiometer (VIRR) onboard the FY-3C satellite is affected by external solar stray light radiation when imaging the ground. In this paper, based on analyzing the solar stray light generation mechanism, we propose a simulation and analysis method combined with the given satellite orbit attitude model to investigate the influence of external solar stray light on VIRR’s imaging quality. We use the FY-3C orbit parameters to obtain the variation pattern of the angles between the solar vector and the payload. Based on the VIRR mechanical structure and optical scattering model, light tracing is performed to investigate the spatial distribution of irradiation on the primary mirror. The results of the occurrence time and intensity of stray light obtained by the simulation are consistent with the actual data when imaging the ground, which verifies that the proposed method is a correct and effective way to investigate the regularity of the external stray light of on-orbit payload.

Funder

Science Foundation of Science and Technology on Low-Light-Level Night Vision Laboratory

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3