Evaluating Image Normalization via GANs for Environmental Mapping: A Case Study of Lichen Mapping Using High-Resolution Satellite Imagery

Author:

Jozdani ShahabORCID,Chen DongmeiORCID,Chen Wenjun,Leblanc Sylvain G.ORCID,Lovitt Julie,He LimingORCID,Fraser Robert H.ORCID,Johnson Brian AlanORCID

Abstract

Illumination variations in non-atmospherically corrected high-resolution satellite (HRS) images acquired at different dates/times/locations pose a major challenge for large-area environmental mapping and monitoring. This problem is exacerbated in cases where a classification model is trained only on one image (and often limited training data) but applied to other scenes without collecting additional samples from these new images. In this research, by focusing on caribou lichen mapping, we evaluated the potential of using conditional Generative Adversarial Networks (cGANs) for the normalization of WorldView-2 (WV2) images of one area to a source WV2 image of another area on which a lichen detector model was trained. In this regard, we considered an extreme case where the classifier was not fine-tuned on the normalized images. We tested two main scenarios to normalize four target WV2 images to a source 50 cm pansharpened WV2 image: (1) normalizing based only on the WV2 panchromatic band, and (2) normalizing based on the WV2 panchromatic band and Sentinel-2 surface reflectance (SR) imagery. Our experiments showed that normalizing even based only on the WV2 panchromatic band led to a significant lichen-detection accuracy improvement compared to the use of original pansharpened target images. However, we found that conditioning the cGAN on both the WV2 panchromatic band and auxiliary information (in this case, Sentinel-2 SR imagery) further improved normalization and the subsequent classification results due to adding a more invariant source of information. Our experiments showed that, using only the panchromatic band, F1-score values ranged from 54% to 88%, while using the fused panchromatic and SR, F1-score values ranged from 75% to 91%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3