Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature

Author:

Bastos Leonardo M.ORCID,Froes de Borja Reis AndreORCID,Sharda Ajay,Wright Yancy,Ciampitti Ignacio A.ORCID

Abstract

The spatial information about crop grain protein concentration (GPC) can be an important layer (i.e., a map that can be utilized in a geographic information system) with uses from nutrient management to grain marketing. Recently, on- and off-combine harvester sensors have been developed for creating spatial GPC layers. The quality of these GPC layers, as measured by the coefficient of determination (R2) and the root mean squared error (RMSE) of the relationship between measured and predicted GPC, is affected by different sensing characteristics. The objectives of this synthesis analysis were to (i) contrast GPC prediction R2 and RMSE for different sensor types (on-combine, off-combine proximal and remote); (ii) contrast and discuss the best spatial, temporal, and spectral resolutions and features, and the best statistical approach for off-combine sensors; and (iii) review current technology limitations and provide future directions for spatial GPC research and application. On-combine sensors were more accurate than remote sensors in predicting GPC, yet with similar precision. The most optimal conditions for creating reliable GPC predictions from off-combine sensors were sensing near anthesis using multiple spectral features that include the blue and green bands, and that are analyzed by complex statistical approaches. We discussed sensor choice in regard to previously identified uses of a GPC layer, and further proposed new uses with remote sensors including same season fertilizer management for increased GPC, and in advance segregated harvest planning related to field prioritization and farm infrastructure. Limitations of the GPC literature were identified and future directions for GPC research were proposed as (i) performing GPC predictive studies on a larger variety of crops and water regimes; (ii) reporting proper GPC ground-truth calibrations; (iii) conducting proper model training, validation, and testing; (iv) reporting model fit metrics that express greater concordance with the ideal predictive model; and (v) implementing and benchmarking one or more uses for a GPC layer.

Funder

John Deere

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3