Chemical Composition of Turmeric (Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities

Author:

Wu Huan12ORCID,Liu Zhihao23ORCID,Zhang Yaqiong4ORCID,Gao Boyan4ORCID,Li Yanfang2ORCID,He Xiaohua5ORCID,Sun Jianghao3ORCID,Choe Uyory2,Chen Pei3,Blaustein Ryan A.2ORCID,Yu Liangli2ORCID

Affiliation:

1. Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China

2. Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA

3. Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA

4. Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China

5. Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA

Abstract

Turmeric (Curcuma longa L.) is a perennial tuberous plant from the genus Curcuma (Zingiberaceae) and has been widely used in foods for thousands of years. The present study examined the ethanol extract of turmeric for its chemical composition, antimicrobial activity, and free radical scavenging properties. UHPLC-MS/MS analysis tentatively identified eight compounds in the turmeric extract. Potential antimicrobial effects of 0.1, 1.0, and 10 mg turmeric equivalents (TE)/mL were evaluated in vitro against a variety of Gram-negative bacteria (i.e., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp.) and Gram-positive bacteria (i.e., Enterococcus faecalis, Listeria innocua, and Staphylococcus aureus). Concentrations of 0.1 and 1.0 mg TE/mL inhibited the growth of S. aureus and significantly suppressed that of Pseudomonas sp., E. faecalis, and L. innocua. The growth of all strains, including E. coli, was inhibited by 10 mg TE/mL. Moreover, free radical scavenging capacities were determined using HO●, ABTS●+, and DPPH● (HOSC, ABTS, and RDSC, respectively) radicals. The turmeric ethanol extract had a TPC value of 27.12 mg GAE/g, together with HOSC, RDSC, and ABTS values of 1524.59, 56.38, and 1.70 μmol TE/g, respectively. Our results suggest that turmeric extract has potential applications for use in functional foods to reduce microbial burdens and oxidative stress-related health problems.

Funder

USDA-ARS

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3