Affiliation:
1. Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
2. School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
Abstract
Patients with diabetes require daily medication to maintain blood sugar levels. Nevertheless, the long-term use of antidiabetics can lose efficacy and cause degeneration in some patients. For long-term diabetes care, integrating natural dietary foods and medicine is being considered. This study investigated the impact of SDOs on blood sugar levels and their physiological effects on diabetic rats. We induced diabetes in male Wistar rats with STZ (50 mg/kg) and then administered an oral glucose tolerance test to determine the SDO dosage comparable to glibenclamide. The rats were divided into nine groups: normal, diabetic, and diabetic with insulin (10 U/kg), glibenclamide (0.6 mg/kg), bovine serum albumin (BSA; 200 mg/kg), soy protein isolate (200 mg/kg), or SDOs (50, 100, and 200 mg/kg). Diabetic rats administered SDOs had a higher body weight and serum insulin but a lower blood sugar than diabetic control rats. Biochemical assays indicated lower AST/SGOT, ALT/SGPT, BUN, and triglycerides but higher HDL in the SDO groups. Immunohistochemistry showed that SDOs reduced damaged islet cells, increased beta-cell size, and improved insulin levels while decreasing alpha cell size and glucagon. The vascular effects of SDOs were like those of normal control treatment and insulin treatment in diabetic rats. SDOs, a yellow silk protein, show potential for long-term diabetes care.
Funder
Suranaree University of Technology