APHS-YOLO: A Lightweight Model for Real-Time Detection and Classification of Stropharia Rugoso-Annulata

Author:

Liu Ren-Ming1,Su Wen-Hao1ORCID

Affiliation:

1. College of Engineering, China Agricultural University, Haidian, Beijing 100083, China

Abstract

The classification of Stropharia rugoso-annulata is currently reliant on manual sorting, which may be subject to bias. To improve the sorting efficiency, automated sorting equipment could be used instead. However, sorting naked mushrooms in real time remains a challenging task due to the difficulty of accurately identifying, locating and sorting large quantities of them simultaneously. Models must be deployable on resource-limited devices, making it challenging to achieve both a high accuracy and speed. This paper proposes the APHS-YOLO (YOLOv8n integrated with AKConv, CSPPC and HSFPN modules) model, which is lightweight and efficient, for identifying Stropharia rugoso-annulata of different grades and seasons. This study includes a complete dataset of runners of different grades in spring and autumn. To enhance feature extraction and maintain the recognition accuracy, the new multi-module APHS-YOLO uses HSFPNs (High-Level Screening Feature Pyramid Networks) as a thin-neck structure. It combines an improved lightweight PConv (Partial Convolution)-based convolutional module, CSPPC (Integration of Cross-Stage Partial Networks and Partial Convolution), with the Arbitrary Kernel Convolution (AKConv) module. Additionally, to compensate for the accuracy loss due to lightweighting, APHS-YOLO employs a knowledge refinement technique during training. Compared to the original model, the optimized APHS-YOLO model uses 57.8% less memory and 62.5% fewer computational resources. It has an FPS (frames per second) of over 100 and even achieves 0.1% better accuracy metrics than the original model. These research results provide a valuable reference for the development of automatic sorting equipment for forest farmers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference17 articles.

1. Mushroom classification using ANN and ANFIS algorithm;Verma;IOSR J. Eng.,2018

2. Computer vision and machine learning applied in the mushroom industry: A critical review;Yin;Comput. Electron. Agric.,2022

3. Workpiece surface defect detection method based on improved YOLOv4;Chen;Comput. Appl.,2022

4. Design and test of online automatic grading system for Agaricus bisporus mushroom based on machine vision;Wang;J. Agric. Eng.,2018

5. The development of a machine vision system for shiitake grading;Chen;J. Food Qual.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3