Construction of a Food Safety Evaluation System Based on the Factor Analysis of Mixed Data Method

Author:

Liu Yiqiong1,Cai Shengmei2,He Xuelei2ORCID,He Xiaowei2,Yue Tianli134

Affiliation:

1. College of Food Science and Technology, Northwest University, Xi’an 710069, China

2. School of Information Sciences and Technology, Northwest University, Xi’an 710069, China

3. Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi’an 710069, China

4. Research Center of Food Safety Risk Assessment and Control, Xi’an 710069, China

Abstract

Food safety evaluation, which aims to reflect food safety status, is an important part of food safety management. Traditional food evaluation methods often consider limited data, and the evaluation process is subjective, time-consuming, and difficult to popularize. We developed a new food safety evaluation system that incorporates simple qualification degrees, food consumption, project hazard degrees, sales channels, food production regions, and other information obtained from food safety sampling and inspection to reflect the food safety situation accurately, objectively, and comprehensively. This evaluation model combined the statistical method and the machine learning method. The optimal distance method was used to calculate the basic qualification degree, and then expert elicitation via a questionnaire and the factor analysis of mixed data method (FADM) was applied to modify the basic qualification degree so as to obtain the food safety index, which indicates food safety status. Then, the effectiveness of this new method was verified by calculating and analyzing of the food safety index in region X. The results show that this model can clearly distinguish food safety levels in different cities and food categories and identify food safety trends in different years. Thus, this food safety evaluation system based on the FADM quantifies the real food safety level, screens out cities and food categories with high food safety risks, and, finally, helps to optimize the allocation of regulatory resources and provide technical and theoretical support for government decision-making.

Funder

National Natural Science Foundation of China

Central Guiding Local Science and Technology Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3