Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways

Author:

Liu Shiyu1,Song Danliangmin1,Liu Biqi1,Dong Kai1,Jiang Yujun1,Man Chaoxin1,Yang Xinyan12,Zhao Feng12ORCID

Affiliation:

1. Department of Food Science, Northeast Agricultural University, Harbin 150038, China

2. Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China

Abstract

The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain’s drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain’s resistance profile.

Funder

Joint Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3