Characteristics and Functions of Dominant Yeasts Together with Their Applications during Strong-Flavor Baijiu Brewing

Author:

Dong Weiwei12ORCID,Zeng Yulun2,Ma Jiyuan1,Cai Kaiyun3,Guo Tingting3,Tan Guangxun3,Yu Xiang1,Hu Yuanliang1,Peng Nan2,Zhao Shumiao2

Affiliation:

1. Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China

2. National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. Hubei Daohuaxiang Liquor Co., Ltd., Yichang 443112, China

Abstract

Yeasts are pivotal brewing microbes that are associated with the flavor and quality of Chinese baijiu, yet research on dominant yeasts in strong-flavor baijiu brewing remains limited. In this study, Saccharomyces cerevisiae, Pichia kudriavzevii, and Kazachstania bulderi were identified as predominated yeasts in strong-flavor baijiu. Each strain showed distinct characteristics in ethanol resistance, thermal tolerance, and lactic acid tolerance, severally. S. cerevisiae FJ1-2 excelled in ethanol and ethyl ester production, P. kudriavzevii FJ1-1 in ethyl acetate, and K. bulderi FJ1-3 in lactic acid generation. Subsequently, the reinforced Fuqu of each yeast were severally prepared for application in baijiu brewing to verify their functions. Results revealed that the relative abundance of fortified yeast in each group rose. Pichia, Kazachstania, and Saccharomyces emerged as the core microbe for each group, respectively, by co-occurrence network analysis, influencing the microbiota to regulate flavor substances. In short, P. kudriavzevii FJ1-1 enhanced ethyl acetate. K. bulderi FJ1-3 improved ethyl caproate production and decreased levels of ethyl acetate and higher alcohols by modulating yeast community between Pichia and Saccharomyces. This is a systematic endeavor to study the functions of yeasts of strong-flavor baijiu, providing a solid basis for improving baijiu quality.

Funder

Key Research and Development Program of Hubei Province

China Postdoctoral Science Foundation

Excellent Young and Middle-Aged Science and Technology Innovation Team Plan Project of University in Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3