QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds

Author:

Furlan Veronika12,Tošović Jelena1ORCID,Bren Urban123

Affiliation:

1. Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia

2. Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia

3. Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia

Abstract

In this study, a novel quantum mechanics-based protocol for the evaluation of carcinogen-scavenging activity (QM-CSA) is developed. The QM-CSA protocol represents a universal and quantitative approach to evaluate and compare the activation-free energies for alkylation reactions between individual polyphenolic compounds and chemical carcinogens of the epoxy type at physiological conditions by applying two scales: the absolute scale allowing for the comparison with guanine and the relative scale allowing the comparison with glutathione as a reference compound. The devised quantum mechanical methodology was validated by comparing the activation-free energies calculated with 14 DFT functionals in conjunction with two implicit solvation models (SMD and CPCM) and the experimental activation-free energies for reactions between nine investigated chemical carcinogens and guanine. According to the obtained results, the best agreement with experimental data was achieved by applying DFT functionals M11-L and MN12-L in conjunction with the flexible 6-311++G(d,p) basis set and implicit solvation model SMD, and the obtained uncertainties were proven to be similar to the experimental ones. To demonstrate the applicability of the QM-CSA protocol, functionals M11-L, and MN12-L in conjunction with the SMD implicit solvation model were applied to calculate activation-free energies for the reactions of nine investigated chemical carcinogens of the epoxy type with three catechins, namely EGCG, EGC, and (+)-catechin. The order of CSA in this series of catechins in comparison to guanine and glutathione was determined as (+)-catechin > EGC > EGCG. The obtained results, for the first time, demonstrated the evaluation and comparison of CSA in a series of selected catechins with respect to glutathione and guanine. Moreover, the presented results provide valuable insights into the reaction mechanisms and configurations of the corresponding transition states. The novel QM-CSA protocol is also expected to expand the kinetic data for alkylation reactions between various polyphenolic compounds and chemical carcinogens of the epoxy type, which is currently lacking in the scientific literature.

Funder

Slovenian Research and Innovation Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3