Affiliation:
1. Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
2. Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
3. Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
Abstract
Excessive salt intake, primarily from sodium chloride prevalent in modern food processing, poses a significant public health risk associated with hypertension, cardiovascular diseases and stroke. Researchers worldwide are exploring approaches to reduce salt consumption without compromising food flavor. One promising method is to enhance salty taste perception using multisensory synergies, leveraging gustatory, olfactory, auditory, visual, tactile and trigeminal senses to decrease salt intake while preserving food taste. This review provides a comprehensive overview of salt usage in foods, mechanisms of salty taste perception and evaluation methods for saltiness. Various strategies for reducing salt consumption while maintaining food flavor are examined, with existing salt reduction methods’ advantages and limitations being critically analyzed. A particular emphasis is placed on exploring the mechanisms and potential of multisensory synergy in salt reduction. Taste interactions, olfactory cues, auditory stimulation, visual appearance and tactile sensations in enhancing saltiness perception are discussed, offering insights into developing nutritious, appealing low-sodium foods. Furthermore, challenges in current research are highlighted, and future directions for effective salt reduction strategies to promote public health are proposed. This review aims to establish a scientific foundation for creating healthier, flavorful low-sodium food options that meet consumer preferences and wellness needs.
Funder
National Natural Science Foundation of China
Beijing Outstanding Young Scientist Program
China Postdoctoral Science Foundation