Osmanthus fragrans Flavonoid Extract Inhibits Adipogenesis and Induces Beiging in 3T3-L1 Adipocytes

Author:

Yang Zhiying1ORCID,Lu Yuxin1,Li Tingting2,Zhou Xunyong3,Yang Jia1,Yang Shuwen1,Bu Su1,Duan Yifan14

Affiliation:

1. College of Life Science, Nanjing Forestry University, Nanjing 210037, China

2. Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing 210037, China

3. HC Enzyme (Shenzhen) Biotech. Co., Ltd., Shenzhen 518112, China

4. International Cultivar Registration Center for Osmanthus, Nanjing 210037, China

Abstract

Osmanthus fragrans has a long history of cultivation in Asia and is widely used in food production for its unique aroma, which has important cultural and economic values. It is rich in flavonoids with diverse pharmacological properties, such as antioxidant, anti-tumor, and anti-lipid activities. However, little is known regarding the effects of Osmanthus fragrans flavonoid extract (OFFE) on adipogenesis and pre-adipocyte transdifferentiation. Herein, this research aimed to investigate the effect of OFFE on the differentiation, adipogenesis, and beiging of 3T3-L1 adipocytes and to elucidate the underlying mechanism. Results showed that OFFE inhibited adipogenesis, reduced intracellular reactive oxygen species levels in mature adipocytes, and promoted mitochondrial biogenesis as well as beiging/browning in 3T3-L1 adipocytes. This effect was accompanied by increased mRNA and protein levels of the brown adipose-specific marker gene Pgc-1a, and the upregulation of the expression of UCP1, Cox7A1, and Cox8B. Moreover, the research observed a dose-dependent reduction in the mRNA expression of adipogenic genes (C/EBPα, GLUT-4, SREBP-1C, and FASN) with increasing concentrations of OFFE. Additionally, OFFE activated the AMPK signaling pathway to inhibit adipogenesis. These findings elucidate that OFFE has an inhibitory effect on adipogenesis and promotes browning in 3T3-L1 adipocytes, which lays the foundation for further investigation of the lipid-lowering mechanism of OFFE in vivo in the future.

Funder

Industry, Education and Research Project of Jiangsu Science and Technology Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3