Exploration of Convective and Infrared Drying Effect on Image Texture Parameters of ‘Mejhoul’ and ‘Boufeggous’ Date Palm Fruit Using Machine Learning Models

Author:

Noutfia Younes1ORCID,Ropelewska Ewa1ORCID

Affiliation:

1. Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Abstract

Date palm (Phoenix dactylifera L.) fruit samples belonging to the ‘Mejhoul’ and ‘Boufeggous’ cultivars were harvested at the Tamar stage and used in our experiments. Before scanning, date samples were dried using convective drying at 60 °C and infrared drying at 60 °C with a frequency of 50 Hz, and then they were scanned. The scanning trials were performed for two hundred date palm fruit in fresh, convective-dried, and infrared-dried forms of each cultivar using a flatbed scanner. The image-texture parameters of date fruit were extracted from images converted to individual color channels in RGB, Lab, XYZ, and UVS color models. The models to classify fresh and dried samples were developed based on selected image textures using machine learning algorithms belonging to the groups of Bayes, Trees, Lazy, Functions, and Meta. For both the ‘Mejhoul’ and ‘Boufeggous’ cultivars, models built using Random Forest from the group of Trees turned out to be accurate and successful. The average classification accuracy for fresh, convective-dried, and infrared-dried ‘Mejhoul’ reached 99.33%, whereas fresh, convective-dried, and infrared-dried samples of ‘Boufeggous’ were distinguished with an average accuracy of 94.33%. In the case of both cultivars and each model, the higher correctness of discrimination was between fresh and infrared-dried samples, whereas the highest number of misclassified cases occurred between fresh and convective-dried fruit. Thus, the developed procedure may be considered an innovative approach to the non-destructive assessment of drying impact on the external quality characteristics of date palm fruit.

Funder

National Science Centre and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3