Characterization of Key Aroma Compounds of Soy Sauce-like Aroma Produced in Ferment of Soybeans by Bacillus subtilis BJ3-2

Author:

Tan Qibo1,Wu Yongjun1,Li Cen1,Jin Jing1ORCID,Zhang Lincheng1ORCID,Tong Shuoqiu1,Chen Zhaofeng1,Ran Li1,Huang Lu1,Zuo Zeyan2

Affiliation:

1. Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China

2. Guizhou Institute of Products Quality Inspection & Testing, Guiyang 550016, China

Abstract

Fermented soybeans are popular among many for their rich soy sauce-like aroma. However, the precise composition of this aroma remains elusive, with key aroma compounds unidentified. In this study, we screened the candidate genes ilvA and serA in BJ3-2 based on previous multi-omics data, and we constructed three mutant strains, BJ3-2-ΔserA, BJ3-2-ΔilvA, and BJ3-2-ΔserAΔilvA, using homologous recombination to fermented soybeans with varying intensities of soy sauce-like aroma. Our objective was to analyze samples that exhibited different aroma intensities resulting from the fermented soybeans of BJ3-2 and its mutant strains, thereby exploring the key flavor compounds influencing soy sauce-like aroma as well analyzing the effects of ilvA and serA on soy sauce-like aroma. We employed quantitative descriptive sensory analysis (QDA), gas chromatography–olfactometry–mass spectrometry (GC-O-MS), relative odor activity value analysis (rOAV), principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and partial least squares regression analysis (PLSR). QDA revealed the predominant soy sauce-like aroma profile of roasted and smoky aromas. GC-MS detected 99 volatile components, predominantly pyrazines and ketones, across the four samples, each showing varying concentrations. Based on rOAV (>1) and GC-O, 12 compounds emerged as primary contributors to soy sauce-like aroma. PCA and OPLS-DA were instrumental in discerning aroma differences among the samples, identifying five compounds with VIP > 1 as key marker compounds influencing soy sauce-like aroma intensity levels. Differential analyses of key aroma compounds indicated that the mutant strains of ilvA and serA affected soy sauce-like aroma mainly by affecting pyrazines. PLSR analysis indicated that roasted and smoky aromas were the two most important sensory attributes of soy sauce-like aroma, with pyrazines associated with roasted aroma and guaiacol associated with smoky aroma. In addition, substances positively correlated with the intensity of soy sauce-like aroma were verified by additional experiments. This study enhances our understanding of the characteristic flavor compounds in soy sauce-like aroma ferments, provides new perspectives for analyzing the molecular mechanisms of soy sauce-like aroma formation, and provides a theoretical framework for the targeted enhancement of soy sauce-like aroma in various foods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3