Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data

Author:

Feng HaikuanORCID,Tao Huilin,Fan Yiguang,Liu Yang,Li Zhenhai,Yang Guijun,Zhao Chunjiang

Abstract

Crop yields are important for food security and people’s living standards, and it is therefore very important to predict the yield in a timely manner. This study used different vegetation indices and red-edge parameters calculated based on the canopy reflectance obtained from near-surface hyperspectral data and UAV hyperspectral data and used the partial least squares regression (PLSR) and artificial neural network (ANN) methods to estimate the yield of winter wheat at different growth stages. Verification was performed based on these two types of hyperspectral remote sensing data and the yield was estimated using vegetation indices and a combination of vegetation indices and red-edge parameters as the modeling independent variables, respectively, using PLSR and ANN regression, respectively. The results showed that, for the same data source, the optimal vegetation index for estimating the yield was the same in all of the studied growth stages; however, the optimal red-edge parameters were different for different growth stages. Compared with using only the vegetation indices as the modeling factor to estimate yield, the combination of the vegetation indices and red-edge parameters obtained superior estimation results. Additionally, the accuracy of yield estimation was shown to be improved by using the PLSR and ANN methods, with the yield estimation model constructed using the PLSR method having a better prediction effect. Moreover, the yield prediction model obtained using the near-surface hyperspectral sensors had a higher fitting and accuracy than the model obtained using the UAV hyperspectral remote sensing data (the results were based on the specific growth stressors, N and water supply). This study shows that the use of a combination of vegetation indices and red-edge parameters achieved an improved yield estimation compared to the use of vegetation indices alone. In the future, the selection of suitable sensors and methods needs to be considered when constructing models to estimate crop yield.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3