Is an Unmanned Aerial Vehicle (UAV) Suitable for Extracting the Stand Parameters of Inaccessible Underground Forests of Karst Tiankeng?

Author:

Shui Wei,Li Hui,Zhang Yongyong,Jiang Cong,Zhu Sufeng,Wang QianfengORCID,Liu Yuanmeng,Zong Sili,Huang Yunhui,Ma Meiqi

Abstract

Unmanned aerial vehicle (UAV) remote sensing technology is gradually playing a role alternative to traditional field survey methods in monitoring plant functional traits of forest ecology. Few studies focused on monitoring functional trait ecology of underground forests of inaccessible negative terrain with UAV. The underground forests of tiankeng were discovered and are known as the inaccessible precious ecological refugia of extreme negative terrain. The aim of this research proposal is to explore the suitability of UAV technology for extracting the stand parameters of underground forests’ functional traits in karst tiankeng. Based on the multi-scale segmentation algorithm and object-oriented classification method, the canopy parameters (crown width and densities) of underground forests in degraded karst tiankeng were extracted by UAV remote sensing image data and appropriate features collection. First, a multi-scale segmentation algorithm was applied to attain the optimal segmentation scale to obtain the single wood canopy. Second, feature space optimization was used to construct the optimal feature space set for the image and then the k-nearest neighbor(k-NN) classifier was used to classify the image features. The features were classified into five types: canopy, grassland, road, gap, and bare land. Finally, both the crown densities and average crown width of the trees were calculated, and their accuracy were verified. The results showed that overall accuracy of object-oriented image feature classification was 85.60%, with 0.72 of kappa coefficient. The accuracy of tree canopy density extraction was 82.34%, for which kappa coefficient reached 0.91. The average canopy width of trees in the samples from the tiankeng-inside was 5.38 m, while that of the outside samples was 4.83 m. In conclusion, the canopy parameters in karst tiankeng were higher than those outside the tiankeng. Stand parameters extraction of karst tiankeng underground forests based on UAV remote sensing was relatively satisfactory. Thus, UAV technology provides a new approach to explore forest resources in inaccessible negative terrain such as karst tiankengs. In the future, we need to consider UAVs with more bands of cameras to extract more plant functional traits to promote the application of UAV for underground forest ecology research of more inaccessible negative terrain.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference82 articles.

1. Tiankeng: Definition and description;Zhu;Speleogenesis Evol. Karst Aquifers,2006

2. A brief study on karst tiankeng;Zhu;Carsologica Sin.,2003

3. Origination, study progress and prospect of karst tiankeng research in China;Shui;Acta Geogr. Sin.,2015

4. Research on flora of seed plants in Dashiwei Karst Tiankeng Group of Leye, Guangxi;Shen;Guihaia,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3