Abstract
Unmanned aerial vehicle (UAV) remote sensing technology is gradually playing a role alternative to traditional field survey methods in monitoring plant functional traits of forest ecology. Few studies focused on monitoring functional trait ecology of underground forests of inaccessible negative terrain with UAV. The underground forests of tiankeng were discovered and are known as the inaccessible precious ecological refugia of extreme negative terrain. The aim of this research proposal is to explore the suitability of UAV technology for extracting the stand parameters of underground forests’ functional traits in karst tiankeng. Based on the multi-scale segmentation algorithm and object-oriented classification method, the canopy parameters (crown width and densities) of underground forests in degraded karst tiankeng were extracted by UAV remote sensing image data and appropriate features collection. First, a multi-scale segmentation algorithm was applied to attain the optimal segmentation scale to obtain the single wood canopy. Second, feature space optimization was used to construct the optimal feature space set for the image and then the k-nearest neighbor(k-NN) classifier was used to classify the image features. The features were classified into five types: canopy, grassland, road, gap, and bare land. Finally, both the crown densities and average crown width of the trees were calculated, and their accuracy were verified. The results showed that overall accuracy of object-oriented image feature classification was 85.60%, with 0.72 of kappa coefficient. The accuracy of tree canopy density extraction was 82.34%, for which kappa coefficient reached 0.91. The average canopy width of trees in the samples from the tiankeng-inside was 5.38 m, while that of the outside samples was 4.83 m. In conclusion, the canopy parameters in karst tiankeng were higher than those outside the tiankeng. Stand parameters extraction of karst tiankeng underground forests based on UAV remote sensing was relatively satisfactory. Thus, UAV technology provides a new approach to explore forest resources in inaccessible negative terrain such as karst tiankengs. In the future, we need to consider UAVs with more bands of cameras to extract more plant functional traits to promote the application of UAV for underground forest ecology research of more inaccessible negative terrain.
Subject
General Earth and Planetary Sciences
Reference82 articles.
1. Tiankeng: Definition and description;Zhu;Speleogenesis Evol. Karst Aquifers,2006
2. A brief study on karst tiankeng;Zhu;Carsologica Sin.,2003
3. Origination, study progress and prospect of karst tiankeng research in China;Shui;Acta Geogr. Sin.,2015
4. Research on flora of seed plants in Dashiwei Karst Tiankeng Group of Leye, Guangxi;Shen;Guihaia,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献