MID: A Novel Mountainous Remote Sensing Imagery Registration Dataset Assessed by a Coarse-to-Fine Unsupervised Cascading Network

Author:

Feng Ruitao,Li XinghuaORCID,Bai JianjunORCID,Ye YuanxinORCID

Abstract

The geometric registration of mountainous remote sensing images is always a challenging project, as terrain fluctuations increase the complexity. Deep learning, with its superior computing power and data-driven nature, promises to solve this problem. However, the lack of an appropriate dataset limits the development of deep learning technology for mountainous remote sensing image registration, which it still an unsolved problem in photogrammetry and remote sensing. To remedy this problem, this paper presents a manually constructed imagery dataset of mountainous regions, called the MID (mountainous imagery dataset). To create the MID, we use 38 images from the Gaofen-2 satellite developed by China and generated 4093 pairs of reference and sensed image patches, making this the first real mountainous dataset to our knowledge. Simultaneously, we propose a fully unsupervised, convolutional-network-based iterative registration scheme for the MID. First, the large and global deformation of the reference and sensed images is reduced using an affine registration module, generating the coarse alignment. Then, the local and varied distortions are learned and eliminated progressively using a hybrid dilated convolution (HDC)-based encoder–decoder module with multistep iterations, achieving fine registration results. The HDC aims to increase the receptive field without blocking the artifacts, allowing for the continuous characteristics of the mountainous images of a local region to be represented. We provide a performance analysis of some typical registration algorithms and the developed approach for the MID. The proposed scheme gives the highest registration precision, achieving the subpixel alignment of mountainous remote sensing images. Additionally, the experimental results demonstrate the usability of the MID, which can lay a foundation for the development of deep learning technology in large mountainous remote sensing image registration tasks.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3