The Prediction of the Tibetan Plateau Thermal Condition with Machine Learning and Shapley Additive Explanation

Author:

Tang YuhengORCID,Duan Anmin,Xiao Chunyan,Xin Yue

Abstract

The thermal condition over the Tibetan Plateau (TP) plays a vital role in the South Asian high (SAH) and the Asian summer monsoon (ASM); however, its prediction skill is still low. Here, two machine learning models are employed to address this problem. Expert knowledge and distance correlation are used to select the predictors from observational datasets. Both linear and nonlinear relationships are considered between the predictors and predictands. The predictors are utilized for training the machine learning models. The prediction skills of the machine learning models are higher than those of two state-of-the-art dynamic operational models and can explain 67% of the variance in the observations. Moreover, the SHapley Additive exPlanation method results indicate that the important predictors are mainly from the Southern Hemisphere, Eurasia, and western Pacific, and most show nonlinear relationships with the predictands. Our results can be applied to find potential climate teleconnections and improve the prediction of other climate signals.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3