Light-Based IoT: Developing a Full-Duplex Energy Autonomous IoT Node Using Printed Electronics Technology

Author:

Perera Malalgodage Amila Nilantha,Katz Marcos,Häkkinen Juha,Godaliyadda RoshanORCID

Abstract

The light-based Internet of things (LIoT) concept defines nodes that exploit light to (a) power up their operation by harvesting light energy and (b) provide full-duplex wireless connectivity. In this paper, we explore the LIoT concept by designing, implementing, and evaluating the communication and energy harvesting performance of a LIoT node. The use of components based on printed electronics (PE) technology is adopted in the implementation, supporting the vision of future fully printed LIoT nodes. In fact, we envision that as PE technology develops, energy-autonomous LIoT nodes will be entirely printed, resulting in cost-efficient, flexible and highly sustainable connectivity solutions that can be attached to the surface of virtually any object. However, the use of PE technology poses additional challenges to the task, as the performance of these components is typically considerably poorer than that of conventional components. In the study, printed photovoltaic cells, printed OLEDs (organic light-emitting diodes) as well as printed displays are used in the node implementation. The dual-mode operation of the proposed LIoT node is demonstrated, and its communication performance in downlink and uplink directions is evaluated. In addition, the energy harvesting system’s behaviour is studied and evaluated under different illumination scenarios and based on the results, a novel self-operating limitation aware algorithm for LIoT nodes is proposed.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Feasibility Study of Optical Wireless-based Data and Power Transfer for In-body Medical Devices;2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP);2024-07-17

2. Towards truly sustainable IoT systems: the SUPERIOT project;Journal of Physics: Photonics;2024-01-01

3. Engineering perovskite solar cells for efficient wireless power transfer;APL Energy;2023-10-27

4. Design and Implementation of a Sustainable Light-based IoT Node on a System-on-Chip;2023 IEEE International Conference on Communications Workshops (ICC Workshops);2023-05-28

5. Novel Data and Energy Networking for Energy Autonomous Light-based IoT Nodes in WPAN Networks;2023 IEEE Wireless Communications and Networking Conference (WCNC);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3