Abstract
A lunar vehicle radiation dosimeter (LVRAD) has been proposed for studying the radiation environment on the lunar surface and evaluating its impact on human health. The LVRAD payload comprises four systems: a particle dosimeter and spectrometer (PDS), a tissue-equivalent dosimeter, a fast neutron spectrometer, and an epithermal neutron spectrometer. A silicon photodiode sensor with compact readout electronics was proposed for the PDS. The PDS system aims to measure protons with 10–100 MeV of energy and assess dose in the lunar space environment. The manufactured silicon photodiode sensor has an effective area of 20 mm × 20 mm and thickness of 650 μm; the electronics consist of an amplifier, analog pulse processor, and a 12-bit analog-to-digital converter for signal readout. We studied the responses of silicon sensors which were manufactured with self-made electronics to gamma rays with a wide range of energies and proton beams.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献