Nonwoven Electrospun Membranes as Tissue Scaffolds: Practices, Problems, and Future Directions

Author:

Shah Dinesh1ORCID,Bhatta Lok Ranjan2,Sharma Ram Kumar1,Pant Bishweshwar3ORCID,Park Mira3ORCID,Ojha Gunendra Prasad3ORCID,Pant Hem Raj1ORCID

Affiliation:

1. Nanomaterials Lab, Department of Applied Sciences and Chemical Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Kirtipur, Kathmandu 44700, Nepal

2. Biological Resources Unit, Faculty of Science, Nepal Academy of Science & Technology, Khumaltar, Lalitpur 44700, Nepal

3. Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea

Abstract

A flexible and dependable method that has been extensively employed to construct nanofibrous scaffolds that resemble the extracellular matrix made from polymeric materials is electrospinning (ES). ES is superior to other techniques because of its unique capacity to create nanofibers with a high surface-to-volume ratio, low cost, simplicity of setup, freedom in material choice, and ability to alter the surface attributes and usefulness of the nanofibers. However, the low productivity of nanofibrous membrane from conventional ES with the generation of tightly packed nanofibrous sheet-like two-dimensional membranes impedes cellular infiltration into scaffolds during tissue regeneration. Moreover, toxic organic solvents are desired for polymer dissolution for ES. Such solvents produce volatile organic compounds (VOCs) during electrospinning, which can degrade the indoor air quality of working place. Furthermore, when electrospun membranes containing traces of such VOCs are employed as tissue scaffolds, it may cause serious effect to cells and tissue. This justifies the need for alternative green solvents which are not only environmentally friendly, non-toxic, and low-cost but also biocompatible with medicinal values. Therefore, this review mainly focuses on summarizing the recent advances in ES machines, fabrication of three-dimensional (3D) spongy nanofibrous membrane, and introducing green solvent for polymer processing. Finally, based on the findings of the existing literature and our experience, this review mainly focuses on essential oils as future “greener” alternatives to current toxic solvents used in ES process.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference203 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3