Optimal Proactive Caching for Multi-View Streaming Mobile Augmented Reality

Author:

Huang Zhaohui,Friderikos Vasilis

Abstract

Mobile Augmented Reality (MAR) applications demand significant communication, computing and caching resources to support an efficient amalgamation of augmented reality objects (AROs) with the physical world in multiple video view streams. In this paper, the MAR service is decomposed and anchored at different edge cloud locations to optimally explore the scarce edge cloud resources, especially during congestion episodes. In that way, the proposed scheme enables an efficient processing of popular view streams embedded with AROs. More specifically, in this paper, we explicitly utilize the notion of content popularity not only to synthetic objects but also to the video view streams. In this case, popular view streams are cached in a proactive manner, together with preferred/popular AROs, in selected edge caching locations to improve the overall user experience during different mobility events. To achieve that, a joint optimization problem considering mobility, service decomposition, and the balance between service delay and the preference of view streams and embedded AROs is proposed. To tackle the curse of dimensionality of the optimization problem, a nominal long short-term memory (LSTM) neural network is proposed, which is trained offline with optimal solutions and provides high-quality real-time decision making within a gap between 5.6% and 9.8% during inference. Evidence from a wide set of numerical investigations shows that the proposed set of schemes owns around 15% to 38% gains in delay and hence substantially outperforms nominal schemes, which are oblivious to user mobility and the inherent multi-modality and potential decomposition of the MAR services.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3