A Personalized Diagnosis Method to Detect Faults in a Bearing Based on Acceleration Sensors and an FEM Simulation Driving Support Vector Machine

Author:

Liu XiaoyangORCID,Huang Haizhou,Xiang JiaweiORCID

Abstract

Classification of faults in mechanical components using machine learning is a hot topic in the field of science and engineering. Generally, every real-world running mechanical system exhibits personalized vibration behaviors that can be measured with acceleration sensors. However, faulty samples of such systems are difficult to obtain. Therefore, machine learning methods, such as support vector machine (SVM), neural network (NNs), etc., fail to obtain agreeable fault detection results through smart sensors. A personalized diagnosis fault method is proposed to activate the smart sensor networks using finite element method (FEM) simulations. The method includes three steps. Firstly, the cosine similarity updated FEM models with faults are constructed to obtain simulation signals (fault samples). Secondly, every simulation signal is separated into sub-signals to solve the time-domain indexes to generate the faulty training samples. Finally, the measured signals of unknown samples (testing samples) are inserted into the trained SVM to classify faults. The personalized diagnosis method is applied to detect bearing faults of a public bearing dataset. The classification accuracy ratios of six types of faults are 90% and 92.5%, 87.5% and 87.5%, 85%, and 82.5%, respectively. It confirms that the present personalized diagnosis method is effectiveness to detect faults in the absence of fault samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3