Research on Human Travel Correlation for Urban Transport Planning Based on Multisource Data

Author:

Chen HuaORCID,Cai Ming,Xiong ChenORCID

Abstract

With the rapid development of positioning techniques, a large amount of human travel trajectory data is collected. These datasets have become an effective data resource for obtaining urban traffic patterns. However, many traffic analyses are only based on a single dataset. It is difficult to determine whether a single-dataset-based result can meet the requirement of urban transport planning. In response to this problem, we attempted to obtain traffic patterns and population distributions from the perspective of multisource traffic data using license plate recognition (LPR) data and cellular signaling (CS) data. Based on the two kinds of datasets, identification methods of residents’ travel stay point are proposed. For LPR data, it was identified based on different vehicle speed thresholds at different times. For CS data, a spatiotemporal clustering algorithm based on time allocation was proposed to recognize it. We then used the correlation coefficient r and the significance test p-values to analyze the correlations between the CS and LPR data in terms of the population distribution and traffic patterns. We studied two real-world datasets from five working days of human mobility data and found that they were significantly correlated for the stay and move population distributions. Then, the analysis scale was refined to hour level. We also found that they still maintain a significant correlation. Finally, the origin–destination (OD) matrices between traffic analysis zones (TAZs) were obtained. Except for a few TAZs with poor correlations due to the fewer LPR records, the correlations of the other TAZs remained high. It showed that the population distribution and traffic patterns computed by the two datasets were fairly similar. Our research provides a method to improve the analysis of complex travel patterns and behaviors and provides opportunities for travel demand modeling and urban transport planning. The findings can also help decision-makers understand urban human mobility and can serve as a guide for urban management and transport planning.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3