MAC Performance Analysis for Reliable Power-Line Communication Networks with ARQ Scheme

Author:

Hao Sheng,Zhang Huyin

Abstract

Power-line communication (PLC) networks have been increasingly used for constructing industrial IoT (internet of things) and home networking systems due to their low-cost installation and broad coverage feature. To guarantee the transmission reliability, ARQ (automatic repeat request) scheme is introduced into the link layer of reliable PLC networks, which allows the retransmission of a data frame several times so that it has a higher probability to be correctly received. However, current studies of performance analysis for PLC MAC (medium access control) protocol (i.e., IEEE 1901) do not take into account of the impact of ARQ scheme. To resolve this problem, we propose an analytical model to investigate the MAC performance of IEEE 1901 protocol for reliable PLC networks with ARQ scheme. In the modeling process, we first establish a PLC channel model to reflect the impacts of PLC channel types (containing Rayleigh fading and Log-normal fading), additive non-Gaussian noise feature and ARQ scheme on data transmission at link layer. Next, we employ Renewal theory and Queueing dynamics to capture the transmission attempt behavior of executing IEEE 1901 protocol in the unsaturated environment with finite transit buffer size. On the basis of combining these two models, we derive the closed-form expressions of 1901 MAC metrics considering the influence of the ARQ scheme. Furthermore, we prove that the proposed analytical model has the convergence property. Finally, we evaluate the MAC performance of 1901 protocol for reliable PLC networks with ARQ scheme and verify the proposed analytical model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3