Influence of Specimen Dimension, Water Immersion Protocol, and Surface Roughness on Water Sorption and Solubility of Resin-Based Restorative Materials

Author:

da Silva Eduardo Moreira1ORCID,Amaral Cristiane Mariote1,Jardim Renata Nunes1,Barbosa Marianna Pires1,Rabello Tiago Braga2

Affiliation:

1. Analytical Laboratory of Restorative Biomaterials—LABiom-R, Faculdade de Odontologia, Universidade Federal Fluminense, Niterói 24040-110, Brazil

2. Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil

Abstract

The evaluation of water sorption and solubility is pivotal for the development of new resin-based restorative materials with the potential for clinical application. The purpose of the present study was to evaluate the influence of the specimen dimension, water immersion protocol, and surface roughness on the water sorption and solubility of three resin-based restorative materials. Disk-shaped specimens of 15 mm × 1 mm, 10 mm × 1 mm, and 6 mm × 1 mm were produced with a composite resin (Z100), a resin cement (RelyX ARC), and an adhesive system (Single Bond 2—SB2). The specimens were immersed in distilled water according to four protocols: ISO (all the specimens for each group were vertically immersed in 50 mL); IV-10 (the specimens were individually and vertically immersed in 10 mL); IH-10 (the specimens were individually and horizontally immersed in 10 mL); and IH-2 (the specimens were individually and horizontally immersed in 2 mL). The surface roughness (Sa and Sp) was evaluated using an atomic force microscope, and the degree of conversion was determined using FT-IR spectrometry. The specimen dimension and water immersion protocol had no effect on water sorption and solubility. For the three resin-based restorative materials, Sp was higher than Sa. The degree of conversion was not influenced by the specimen dimension. The variations in the specimen dimension and water immersion protocol compared to those determined by ISO 4049 did not prevent the comparison between the values of water sorption and solubility obtained for a given resin-based restorative material.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Janeiro—FAPERJ

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3