Effect of Cooling Rate on the Microstructure and Mechanical Property of Nickel-Based Superalloy MAR-M247

Author:

Wang Yue1,He Jinshan1ORCID,Hu Pinpin2,Xiao Chengbo2,Wang Xitao13ORCID

Affiliation:

1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

3. Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China

Abstract

Heat treatment is an important process for optimizing the microstructures of superalloys, and the cooling rate after solid solution treatment is one of the most critical parameters. In this work, we treated solid solution MAR-M247 alloys with water quenching, air cooling, and furnace cooling. Microstructure characterization, hardness, and room temperature tensile tests were conducted to investigate the effect of cooling rate on the microstructure and mechanical properties of MAR-M247 alloys. The results showed that the cooling rate after solid solution treatment mainly affected the precipitation behavior of the secondary γ′ phase, but it had few effects on other microstructure characterizations, including grain size, γ/γ′ eutectic, and MC carbide. The water-quenched sample had the highest cooling rate (400 °C/s) and hardness (400 HV) but suffered from premature fracture because of quenching cracks. A further decrease in cooling rate from 1.5 °C/s to 0.1 °C/s deteriorated hardness (384 HV to 364 HV) and yield strength (960 MPa to 771 MPa) but increased elongation (8.5% to 13.5%). Moreover, the deformation mechanism was transformed from dislocation shearing to Orowan bypassing. The decreased yield strength was mainly due to the weakened precipitation strengthening resulting from γ′-phase coarsening. The improved elongation was attributed to not only the higher work-hardening index caused by interface dislocation networks but also the more uniform deformation, which delayed necking.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3