Peptide Nanotube Encapsulated Enzyme Biosensor for Vapor Phase Detection of Malathion, an Organophosphorus Compound

Author:

Edwards Christopher,Duanghathaipornsuk SurachetORCID,Goltz MarkORCID,Kanel Sushil,Kim Dong-ShikORCID

Abstract

This study explores the use of a butyrylcholinesterase (BChE)-based, reversible reaction biosensor using screen-printed electrodes (SPEs) having a smaller working surface area than the single-use electrodes previously studied. Previous research demonstrated the prospective application of a single-use biosensor fabricated with an acetylcholinesterase (AChE) enzyme encapsulated in peptide nanotubes (PNTs) and enhanced with horseradish peroxidase (HRP) to detect organophosphorus compounds (OPCs) in aqueous and gas phases. In the current study, potential improvements to the biosensor are investigated. BChE-based biosensors were fabricated using PNTs, HRP, and Nafion in combination to increase the reactive surface area, enhance sensitivity, and maintain enzyme stability. Cyclic voltammetry (CV) was used along with the new modified sensor to measure malathion concentration in the gas phase. The results show that a BChE-based biosensor could reliably measure gas phase malathion concentrations between 6–25 ppbv by CV with the extent of inhibition linearly proportional to the malathion concentration (R2 = 0.941). This research demonstrated that fabricated BChE-based biosensors could be stored without cold storage requirement for up to six weeks with minimal performance degradation. Moreover, the sensor electrodes were each reused several times, and were still useable at the conclusion of the research. This research demonstrates the potential of fabricating a reusable, inexpensive biosensor that is capable of OPC detection with high sensitivity and a low detection limit without a long-term cold storage requirement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference19 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3