Abstract
Genotype VII Newcastle Disease Virus (NDV) has caused a pandemic in many countries and usually causes fatal consequences in infected chickens. Although current commercial attenuated NDV vaccines can provide an ideal protection against genotype VII NDV, they cannot completely prevent the infection and viral shedding, and the genotype of some vaccine strains cannot match with the prevalent strain. In this study, in order to construct a thermostable and genotype VII-matched live attenuated vaccine, we used a thermostable genotype VIII virulent HR09 strain as the backbone and replaced its F gene with that of the genotype VII DT-2014 strain. Meanwhile, the cleavage site of F gene of DT-2014 was mutated to that of class I F protein and avirulent class II F protein, respectively. The results showed that the two chimeric viruses, designated rcHR09-CI and rcHR09-CII, shared a similar growth kinetics and thermostability with their parental HR09 strain. Mean death time (MDT) and intracerebral pathogenicity index (ICPI) tests showed that the two chimeric viruses were highly attenuated. Though both chimeric NDVs and La Sota vaccine strain could provide complete protection to immunized chickens against the challenge of virulent genotype VII ZJ1 strain, the two chimeric NDVs could induce a higher level of antibody response against ZJ1 strain and could significantly reduce the viral shedding compared with La Sota vaccine strain. In conclusion, our study constructed two chimeric thermostable genotype VII-matched NDV vaccine candidates, which provided complete protection against the challenge of virulent genotype VII NDV.
Funder
Jiangsu Agriculture Science and Technology Innovation Fund
National Natural Science Foundation of China
China Agriculture Research System of MOF and MARA
Key Special Project "Science and Technology Promote Economy of 2020" of the National Key Research and Development Program
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Virology,Infectious Diseases