Improved Motion Artifact Correction in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement

Author:

Al-Omairi Hayder R.12ORCID,Fudickar Sebastian34ORCID,Hein Andreas3ORCID,Rieger Jochem W.15ORCID

Affiliation:

1. Applied Neurocognitive Psychology Lab, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Germany

2. Department of Biomedical Engineering, University of Technology—Iraq, Baghdad 10066, Iraq

3. Assistance Systems and Medical Device Technology, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

4. Institute for Medical Informatics, University of Lübeck, D-23538 Lübeck, Germany

5. Cluster of Excellence Hearing4all, Carl von Ossietzky Universität Oldenburg, D-26129 Oldenburg, Germany

Abstract

Functional near-infrared spectroscopy (fNIRS) is an optical non-invasive neuroimaging technique that allows participants to move relatively freely. However, head movements frequently cause optode movements relative to the head, leading to motion artifacts (MA) in the measured signal. Here, we propose an improved algorithmic approach for MA correction that combines wavelet and correlation-based signal improvement (WCBSI). We compare its MA correction accuracy to multiple established correction approaches (spline interpolation, spline-Savitzky–Golay filter, principal component analysis, targeted principal component analysis, robust locally weighted regression smoothing filter, wavelet filter, and correlation-based signal improvement) on real data. Therefore, we measured brain activity in 20 participants performing a hand-tapping task and simultaneously moving their head to produce MAs at different levels of severity. In order to obtain a “ground truth” brain activation, we added a condition in which only the tapping task was performed. We compared the MA correction performance among the algorithms on four predefined metrics (R, RMSE, MAPE, and ΔAUC) and ranked the performances. The suggested WCBSI algorithm was the only one exceeding average performance (p < 0.001), and it had the highest probability to be the best ranked algorithm (78.8% probability). Together, our results indicate that among all algorithms tested, our suggested WCBSI approach performed consistently favorably across all measures.

Funder

University of Technology—Iraq

DFG Device Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3