Influence of Nanoparticles and PVA Fibers on Concrete and Mortar on Microstructural and Durability Properties

Author:

Sridhar Radhika1,Aosai Pakjira1,Imjai Thanongsak1ORCID,Setkit Monthian1,Shirkol Anoop2,Laory Irwanda3

Affiliation:

1. School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand

2. Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, India

3. Civil Engineering Stream, School of Engineering, University of Warwick, Coventry CV4 7AL, UK

Abstract

Nanoparticles are one of the effective methodologies implemented in concrete technology. The main objective of this research is to study the influence of nano alumina with different percentage variations ranging from 1% to 3% along with the incorporation of PVA fibers. From the mechanical properties test, the optimum dosage was determined to further study the durability behavior. This research work also investigates the hybridization of two nanoparticles such as nano silica (NS) and nano alumina (NA). The results show that the increasing quantity of NA reduces the compressive strength of the mortar due to agglomeration (cluster of particles), which results in a greater molecular attraction force. From the test results, it is concluded that the optimum dosage has been attained with an addition of 2% NA with 0.3% PVA. The compression strength test results at 14 days and 28 days reveal that the addition of NA tends the mineral admixture to react at early ages in the hydration process, which produces a new chemical compound to fill the pores. The rapid chloride penetration (RCPT) test results at 28 days significantly improved with the incorporation of nanoparticles due to their effective size and chemical reaction towards the other compounds. The test results from the hybridization of nanoparticles showed that the compressive strength was significantly enhanced compared to that of the control mortar and mortar with NA. They are effective up to certain limits beyond that addition, and the workability was reduced. Amongst all mixtures, the maximum compression strength has been attained for the mix with the addition of NA 0.5% and NS 2.5% comparatively. The microstructural properties of mortar were also studied through scanning electron microscope (SEM) analysis. The results showed that the incorporation of nanoparticles in the mortar matrix turns homogeneous with fewer pores and greater amount of hydration compounds; thereby, pore refinement has improved the hydration compounds remarkably.

Funder

Walailak University

Walailak University International Mobility Fund for Research collaboration program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3