Study on Crack Classification Criterion and Failure Evaluation Index of Red Sandstone Based on Acoustic Emission Parameter Analysis

Author:

Li Jiashen,Lian ShuailongORCID,Huang Yansen,Wang Chaolin

Abstract

The acoustic emission (AE) characteristics of rock during loading can reflect the law of crack propagation and evolution in the rock. In order to study the fracture mode in the process of rock fracture, the AE characteristics and crack types of red sandstone during fracture were investigated by conducting Brazilian indirect tensile tests (BITT), direct shear tests (DST), and uniaxial compression tests (UCT). The evolution law of AE event rate, RA and AF values, and the distribution law of RA–AF data of red sandstone samples in three test types were analyzed. Based on the kernel density estimation (KDE) function and the coupling AE parameters (RA–AF values) in DST and BITT, the relatively objective dividing line for classifying tensile and shear cracks was discussed, and the dividing line was applied to the analysis of fracture source evolution and the failure precursor of red sandstone. The results show that the dividing line for classifying tensile and shear cracks of red sandstone is AF = 93RA + 75. Under uniaxial compression loading, the fracture source of red sandstone is primarily shear source in the initial phase of loading and tensile source in the critical failure phase, and the number is far greater than shear source. K = AF/(93RA + 75) can be defined as the AE parameter index, and its coefficient of variation CV (k) can be used as the failure judgment index of red sandstone. When CV (k) < 1, it can be considered that red sandstone enters the instability failure phase.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3