Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro

Author:

Forero-Ortiz EdwarORCID,Martínez-Gomariz EduardoORCID,Cañas Porcuna Manuel,Locatelli Luca,Russo BeniaminoORCID

Abstract

Flooding events can produce significant disturbances in underground transport systems within urban areas and lead to economic and technical consequences, which can be worsened by variations in the occurrence of climate extremes. Within the framework of the European project RESCCUE (RESilience to cope with Climate Change in Urban arEas—a multi-sectorial approach focusing on water), climate projections for the city of Barcelona manifest meaningful increases in maximum rainfall intensities for the 2100 horizon. A better comprehension of these impacts and their conditions is consequently needed. A hydrodynamic modelling process was carried out on Barcelona Metro Line 3, as it was identified as vulnerable to pluvial flooding events. The Metro line and all its components are simulated in the urban drainage models as a system of computational link and nodes reproducing the main physical characteristics like slopes and cross-sections when embedded in the current 1D/2D hydrodynamic model of Barcelona used in the project RESCCUE. This study presents a risk analysis focused on ensuring transport service continuity in flood events. The results reveal that two of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in current rainfall conditions, and 11 of the 26 stations on Metro Line 3 are exposed to a high risk of flooding in future rainfall conditions for a 20-year return period event, which affects Metro service in terms of increased risk. This research gives insights for stakeholders and policymakers to enhance urban flood risk management, as a reasonable approach to tackle this issue for Metro systems worldwide. This study provides a baseline for assessing potential flood outcomes in Metro systems and can be used to evaluate adaptation measures’ effectiveness.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3