River Stage Modeling with a Deep Neural Network Using Long-Term Rainfall Time Series as Input Data: Application to the Shimanto-River Watershed

Author:

Wakatsuki YukiORCID,Nakane Hideaki,Hashino Tempei

Abstract

The increasing frequency of devastating floods from heavy rainfall—associated with climate change—has made river stage prediction more important. For steep, forest-covered mountainous watersheds, deep-learning models may improve prediction of river stages from rainfall. Here we use the framework of multilayer perceptron (MLP) neural networks to develop such a river stage model. The MLP is constructed for the Shimanto river, which lies in southwestern Japan under a mild, rain-heavy climate. Our input for stage estimation, as well as prediction, is a long-term rainfall time series. With a one-year time series of rainfall, the model estimates the stage with RMSE less than 67 cm for about 10 m of stage peaks, as well as accurately simulating stage-time fluctuations. Furthermore, the forecast model can predict the stage without rainfall forecasts up to three hours ahead. To estimate the base flow stages as well as flood peaks with high precision, we found that the rainfall time series should be at least one year. This indicates that the use of a long rainfall time series enables one to model the contributions of ground water and evaporation. Given that the delay between the arrival time of rainfall at a rain-gauge to the outlet change is well-simulated, the physical concepts of runoff appear to be soundly embedded in the MLP.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3