Abstract
Adaptation to climate change requires prediction of its impacts, especially on ecosystems. In this work we simulated the change in bird species richness in the boreal forest of Quebec, Canada, under climate change scenarios. To do so, we first analyzed which geographical and bioclimatic variables were the strongest predictors for the spatial distribution of the current resident bird species. Based on canonical redundancy analysis and analysis of variance, we found that annual temperature range, average temperature of the cold season, seasonality of precipitation, precipitation in the wettest season, elevation, and local percentage of wet area had the strongest influence on the species’ distributions. We used these variables with Random Forests, Multivariate Adaptive Regression Splines and Maximum Entropy models to explain spatial variations in species abundance. Future species distributions were calculated by replacing present climatic variables with projections under different climate change pathways. Subsequently, maps of species richness change were produced. The results showed a northward expansion of areas of highest species richness towards the center of the province. Species are also likely to appear near James Bay and Ungava Bay, where rapid climate change is expected.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献