Temporal and Spatial Analyses of the Landscape Pattern of Wuhan City Based on Remote Sensing Images

Author:

Lv Jianjun,Ma Teng,Dong Zhiwen,Yao YaoORCID,Yuan Zehao

Abstract

With the acceleration of the process of building a national-level central city in Wuhan, the landscape pattern of the city has undergone tremendous changes. In this paper, remote images are classified through the neural network classification method, based on texture extraction, and the evolution of landscape patterns was quantitatively analyzed, based on the method of moving windows, landscape metrics and urban density calculation, in order to accurately extract landscape types and perform quantitative analyses. Wuhan City is taken as an example. The surface coverage of Wuhan City from 1989 to 2016 is divided into four types: agricultural landscape clusters, forest landscape clusters, water landscape clusters, and urban landscape clusters. It was concluded that, during the study period, the landscape heterogeneity of the entire area in Wuhan has increased, but the central urban area in Wuhan has decreased. The development of urban areas has compacted inwards but expanded outwards. In addition, the western part of Wuhan City developed better than the eastern part.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference38 articles.

1. How can urbanization be sustainable? A reflection on the role of city resources in global sustainable development;Roders;BDC–Bollettino del Centro Calza Bini,2014

2. Urban sprawl measurement from remote sensing data

3. On the Formation and Development of Modern Landscape Science;Xiao;Sci. Geogr. Sin.,1999

4. Landscape Ecology—Patterns, Processes, Scales, and Ranks;Wu,2007

5. Ecological principles of landscape classification and assessment;Xiao;Chin. J. Appl. Ecol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3