Fast File Transfers from IoT Devices by Using Multiple Interfaces

Author:

Mostarda LeonardoORCID,Navarra AlfredoORCID,Nobili FrancescoORCID

Abstract

The Internet-of-Things (IoT) is a modern technological revolution that enables communication amongst a plethora of different devices. To date, about 30 billion devices have been connected to the internet and more than 75 billion devices are probably to be connected worldwide by 2025. These can range from small sensors and actuators to larger devices such as smartphones, drones or even buildings and interconnected cars. Devices are often mobile and battery powered thus their communication requires fast and energy efficient solutions. To this end, this paper studies the use of multi-interface communication for fast and energy efficient communication. In particular, we consider the basic operation of data transfer between smartphones in the form of files. This task can be performed for backup purposes, and hence it represents a useful and frequent operation that users perform. Our aim is to provide a new and easy means that optimises file transfers with respect to time and energy consumption. In particular, as smartphones are endowed with various connecting interfaces like Bluetooth, WiFi and 4G, we conduct experimental studies by varying different parameters in order to understand the best setting, including which interface is more appropriate to accomplish file transfer. To this respect, we also implemented an innovative and light app that allows the use of two or more interfaces concurrently. The experimental results show how the coupling of some interfaces might be effective in terms of time, while consuming a negligible amount of energy. Actually, such results become more and more interesting as the size of the file to be transferred grows. The best combination experienced is by making use of WiFi at 5 GHz concurrently with 4G, whereas WiFi at 2.4 GHz caused interference complications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3