Abstract
The shape encoding of geospatial objects is a key problem in the fields of cartography and geoscience. Although traditional geometric-based methods have made great progress, deep learning techniques offer a development opportunity for this classical problem. In this study, a shape encoding framework based on a deep encoder–decoder architecture was proposed, and three different methods for encoding planar geospatial shapes, namely GraphNet, SeqNet, and PixelNet methods, were constructed based on raster-based, graph-based, and sequence-based modeling for shape. The three methods were compared with the existing deep learning-based shape encoding method and two traditional geometric methods. Quantitative evaluation and visual inspection led to the following conclusions: (1) The deep encoder–decoder methods can effectively compute shape features and obtain meaningful shape coding to support the shape measure and retrieval task. (2) Compared with the traditional Fourier transform and turning function methods, the deep encoder–decoder methods showed certain advantages. (3) Compared with the SeqNet and PixelNet methods, GraphNet performed better due to the use of a graph to model the topological relations between nodes and efficient graph convolution and pooling operations to process the node features.
Funder
National Natural Science Foundation of China
Key Laboratory of Digital Mapping and Land Information Application Engineering, Ministry of Natural Resources
State Key Laboratory of Geo-Information Engineering
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献