ICD: VHR-Oriented Interactive Change-Detection Algorithm

Author:

Jiang ZhuoranORCID,Zhou Xinxin,Cao Wei,Sun Zaihong,Wu ChangbinORCID

Abstract

In recent years, deep learning has become the mainstream development direction in the change-detection field, and its accuracy and speed have also reached a high level. However, the change-detection method based on deep learning cannot predict all the change areas accurately, and its application is limited due to local prediction defects. For this reason, we propose an interactive change-detection network (ICD) for very high resolution (VHR) based on a deep convolution neural network. The network integrates positive- and negative-click information in the distance layer of the change-detection network, and users can correct the prediction defects by adding clicks. We carried out experiments on the open source dataset WHU and LEVIR-CD. By adding clicks, their F1-scores can reach 0.920 and 0.912, respectively, which are 4.3% and 4.2% higher than the original network. To better evaluate the correction ability of clicks, we propose a set of evaluation indices—click-correction ranges, which is suitable for evaluating clicks, and we carry out experiments on the above models. The results show that the method of adding clicks can effectively correct the prediction defects and improve the result accuracy.

Funder

National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference33 articles.

1. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data;Ashbindu;Int. J. Remote Sens.,1988

2. Review of Change Detection Methods for Muti-temporal Rempte Sensing Imagery;Haigang;Geomat. Inf. Sci. Wuhan Univ.,2018

3. Change detection from remotely sensed images: From pixel-based to object-based approaches

4. Recent Advances on 2D and 3D Change Detection in Urban Environments from Remote Sensing Data;Karantzalos;Comput. Approaches Urban Environ.,2014

5. Change detection techniques

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ScribbleCDNet: Change detection on high-resolution remote sensing imagery with scribble interaction;International Journal of Applied Earth Observation and Geoinformation;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3