Identification of Oil Tea (Camellia oleifera C.Abel) Cultivars Using EfficientNet-B4 CNN Model with Attention Mechanism

Author:

Zhu Xueyan,Zhang Xinwei,Sun Zhao,Zheng Yili,Su Shuchai,Chen Fengjun

Abstract

Cultivar identification is a basic task in oil tea (Camellia oleifera C.Abel) breeding, quality analysis, and an adjustment in the industrial structure. However, because the differences in texture, shape, and color under different cultivars of oil tea are usually inconspicuous and subtle, the identification of oil tea cultivars can be a significant challenge. The main goal of this study is to propose an automatic and accurate method for identifying oil tea cultivars. In this study, a new deep learning model is built, called EfficientNet-B4-CBAM, to identify oil tea cultivars. First, 4725 images containing four cultivars were collected to build an oil tea cultivar identification dataset. EfficientNet-B4 was selected as the basic model of oil tea cultivar identification, and the Convolutional Block Attention Module (CBAM) was integrated into EfficientNet-B4 to build EfficientNet-B4-CBAM, thereby improving the focusing ability of the fruit areas and the information expression capability of the fruit areas. Finally, the cultivar identification capability of EfficientNet-B4-CBAM was tested on the testing dataset and compared with InceptionV3, VGG16, ResNet50, EfficientNet-B4, and EfficientNet-B4-SE. The experiment results showed that the EfficientNet-B4-CBAM model achieves an overall accuracy of 97.02% and a kappa coefficient of 0.96, which is higher than that of other methods used in comparative experiments. In addition, gradient-weighted class activation mapping network visualization also showed that EfficientNet-B4-CBAM can pay more attention to the fruit areas that play a key role in cultivar identification. This study provides new effective strategies and a theoretical basis for the application of deep learning technology in the identification of oil tea cultivars and provides technical support for the automatic identification and non-destructive testing of oil tea cultivars.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3