3D-Printed Micro-Tweezers with a Compliant Mechanism Designed Using Topology Optimization

Author:

Moritoki Yukihito,Furukawa TaichiORCID,Sun Jinyi,Yokoyama Minoru,Shimono Tomoyuki,Yamada TakayukiORCID,Nishiwaki Shinji,Kageyama TatsutoORCID,Fukuda JunjiORCID,Mukai MasaruORCID,Maruo ShojiORCID

Abstract

The development of handling technology for microscopic biological samples such as cells and spheroids has been required for the advancement of regenerative medicine and tissue engineering. In this study, we developed micro-tweezers with a compliant mechanism to manipulate organoids. The proposed method combines high-resolution microstereolithography that uses a blue laser and topology optimization for shape optimization of micro-tweezers. An actuation system was constructed using a linear motor stage with a force control system to operate the micro-tweezers. The deformation of the topology-optimized micro-tweezers was examined analytically and experimentally. The results verified that the displacement of the tweezer tip was proportional to the applied load; furthermore, the displacement was sufficient to grasp biological samples with an approximate diameter of several hundred micrometers. We experimentally demonstrated the manipulation of an organoid with a diameter of approximately 360 µm using the proposed micro-tweezers. Thus, combining microstereolithography and topology optimization to fabricate micro-tweezers can be potentially used in modifying tools capable of handling various biological samples.

Funder

Core Research for Evolutional Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3