Stand-Level Fuel Reduction Treatments and Fire Behaviour in Canadian Boreal Conifer Forests

Author:

Beverly Jennifer L.ORCID,Leverkus Sonja E. R.,Cameron Hilary,Schroeder Dave

Abstract

Stand-level fuel reduction treatments in the Canadian boreal zone are used predominantly in community protection settings to alter the natural structure of dominant boreal conifer stands such as black spruce (Picea mariana (Mill.) BSP), jack pine (Pinus banksiana Lamb.) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia). The aim of these fuel treatments is to inhibit the development of fast-spreading, high-intensity crown fires that naturally occur in boreal forest ecosystems. We document fuel treatment design standards used in boreal forests in Canada and review data requirements and methodological approaches for investigating fuel treatment effects on fire behaviour. Through a series of illustrative examples and summaries of empirical observations, we explore the implications of data and modelling assumptions used to estimate fire behaviour in fuel-treated areas and identify insights about fuel treatment effectiveness in boreal conifer stands. Fuel treatments in black spruce, jack pine and lodgepole pine stands were generally effective at reducing modelled and observed fire behaviour and inhibiting crown fire development and spread under low to moderate fire weather conditions. Evidence suggests that fuel treatments in these fuel types will be ineffective when rates of spread and wind speeds are very high or extreme. High surface fuel loads combined with the relatively short stature of boreal conifer trees can further undermine fuel treatment efforts. Priority areas for future study include examining alternatives for managing surface fuel loads in treated stands, exploring the viability of alternative horizontal fuel reduction protocols such as clumped fuel configurations, and integrating suppression and containment strategies within the fuel treatment planning and design process.

Funder

Alberta Agriculture and Forestry

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference92 articles.

1. The extent of the North American boreal zone

2. Fire behaviour in northern conifer forests and shrublands;Van Wagner,1983

3. Fire in the Boreal Forest

4. Development and structure of the Canadian Forest Fire Behaviour Prediction System. Information Report ST-X-3,1992

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3