Abstract
We examined the possibility of measuring dissolved oxygen by using a potentiometric solid-state semiconductor sensor. Thin films of tin (IV) oxide (SnO2) are widely used in oxygen gas sensors. However, their ability to detect dissolved oxygen (DO) in solutions is still unknown. In this paper, we present a method for investigating the dissolved oxygen-sensing properties of SnO2 thin films in solutions by fabricating a SnO2-gate field-effect transistor (FET). A similarly structured hydrogen ion-sensitive silicon nitride (Si3N4)-gate FET was fabricated using the same method. The transfer characteristics and sensitivities were experimentally obtained and compared. The transfer characteristics of the FET show a shift in threshold voltage in response to a decrease in DO concentration. The SnO2-gate FET exhibited a sensitivity of 4 mV/ppm, whereas the Si3N4-gate FET showed no response to DO. Although the SnO2-gate FET responds to pH changes in the solution, this sensitivity issue can be eliminated by using a Si3N4-gate FET, which is capable of selectively sensing hydrogen ions without DO sensitivity. The experimental results indicate the promising properties of SnO2 thin films for multimodal sensing applications.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献