Exploring Data Augmentation Algorithm to Improve Genomic Prediction of Top-Ranking Cultivars

Author:

Montesinos-López Osval A.1,Sivakumar Arvinth2,Huerta Prado Gloria Isabel3ORCID,Salinas-Ruiz Josafhat4ORCID,Agbona Afolabi56,Ortiz Reyes Axel Efraín1,Alnowibet Khalid7ORCID,Ortiz Rodomiro8ORCID,Montesinos-López Abelardo9,Crossa José10111213

Affiliation:

1. Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico

2. ICAR—Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India

3. Independent Researcher, Zinacatepec 75960, Mexico

4. Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, Amatlán de los Reyes, Veracruz 94946, Mexico

5. International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria

6. Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA

7. Department of Statistics and Operations Research, King Saud University, Riyah 11459, Saudi Arabia

8. Department of Plant Breeding, Swedish University of Agricultural Science (SLU), P.O. Box SE 23436 Lomma, Sweden

9. Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44430, Mexico

10. Dintiguish Scientist Fellowship Program, King Saud University, Riyah 11459, Saudi Arabia

11. Louisiana State University, Baton Rouge, LA 70803, USA

12. Colegio de Postgraduados, Montecillos 56230, Mexico

13. International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico, Veracruz 52640, Mexico

Abstract

Genomic selection (GS) is a groundbreaking statistical machine learning method for advancing plant and animal breeding. Nonetheless, its practical implementation remains challenging due to numerous factors affecting its predictive performance. This research explores the potential of data augmentation to enhance prediction accuracy across entire datasets and specifically within the top 20% of the testing set. Our findings indicate that, overall, the data augmentation method (method A), when compared to the conventional model (method C) and assessed using Mean Arctangent Absolute Prediction Error (MAAPE) and normalized root mean square error (NRMSE), did not improve the prediction accuracy for the unobserved cultivars. However, significant improvements in prediction accuracy (evidenced by reduced prediction error) were observed when data augmentation was applied exclusively to the top 20% of the testing set. Specifically, reductions in MAAPE_20 and NRMSE_20 by 52.86% and 41.05%, respectively, were noted across various datasets. Further investigation is needed to refine data augmentation techniques for effective use in genomic prediction.

Funder

Bill & Melinda Gates Foundation

USAID projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3