Abstract
Active pharmaceutical ingredient (API) particle size distribution is important for both downstream processing operations and in vivo performance. Crystallization process parameters and reactor configuration are important in controlling API particle size distribution (PSD). Given the large number of parameters and the scale-dependence of many parameters, it can be difficult to design a scalable crystallization process that delivers a target PSD. Population balance modeling is a useful tool for understanding crystallization kinetics, which are primarily scale-independent, predicting PSD, and studying the impact of process parameters on PSD. Although population balance modeling (PBM) does have certain limitations, such as scale dependency of secondary nucleation, and is currently limited in commercial software packages to one particle dimension, which has difficulty in predicting PSD for high aspect ratio morphologies, there is still much to be gained from applying PBM in API crystallization processes.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献