Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods

Author:

Mohammed Alsumaidaee Yaseen Ahmed1ORCID,Yaw Chong Tak2ORCID,Koh Siaw Paw23,Tiong Sieh Kiong23,Chen Chai Phing3,Yusaf Talal4ORCID,Abdalla Ahmed N5,Ali Kharudin6ORCID,Raj Avinash Ashwin7

Affiliation:

1. College of Graduate Studies (COGS), Universiti Tenaga Nasional (The Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia

2. Institute of Sustainable Energy, Universiti Tenaga Nasional (The Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia

3. Department Electrical and Electronics Engineering, Universiti Tenaga Nasional (The Energy University), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia

4. School of Engineering and Technology, Central Queensland University, Brisbane, QLD 4009, Australia

5. Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai’an 223003, China

6. Faculty of Electrical and Automation Engineering Technology, UC TATI, Teluk Kalong, Kemaman 24000, Terengganu, Malaysia

7. Tenaga National Berhard Research Sdn. Bhd., No. 1, Kawasan Institusi Penyelidikan, Jln Ayer Hitam, Kajang 43000, Selangor, Malaysia

Abstract

The damaging effects of corona faults have made them a major concern in metal-clad switchgear, requiring extreme caution during operation. Corona faults are also the primary cause of flashovers in medium-voltage metal-clad electrical equipment. The root cause of this issue is an electrical breakdown of the air due to electrical stress and poor air quality within the switchgear. Without proper preventative measures, a flashover can occur, resulting in serious harm to workers and equipment. As a result, detecting corona faults in switchgear and preventing electrical stress buildup in switches is critical. Recent years have seen the successful use of Deep Learning (DL) applications for corona and non-corona detection, owing to their autonomous feature learning capability. This paper systematically analyzes three deep learning techniques, namely 1D-CNN, LSTM, and 1D-CNN-LSTM hybrid models, to identify the most effective model for detecting corona faults. The hybrid 1D-CNN-LSTM model is deemed the best due to its high accuracy in both the time and frequency domains. This model analyzes the sound waves generated in switchgear to detect faults. The study examines model performance in both the time and frequency domains. In the time domain analysis (TDA), 1D-CNN achieved success rates of 98%, 98.4%, and 93.9%, while LSTM obtained success rates of 97.3%, 98.4%, and 92.4%. The most suitable model, the 1D-CNN-LSTM, achieved success rates of 99.3%, 98.4%, and 98.4% in differentiating corona and non-corona cases during training, validation, and testing. In the frequency domain analysis (FDA), 1D-CNN achieved success rates of 100%, 95.8%, and 95.8%, while LSTM obtained success rates of 100%, 100%, and 100%. The 1D-CNN-LSTM model achieved a 100%, 100%, and 100% success rate during training, validation, and testing. Hence, the developed algorithms achieved high performance in identifying corona faults in switchgear, particularly the 1D-CNN-LSTM model due to its accuracy in detecting corona faults in both the time and frequency domains.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3